Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Morio Toyoshima

Morio Toyoshima

Wireless Networks Research Center - NICT, Japan

Title: High-throughput satellite (HTS) with radio and optical frequencies for the next generation satellite communications

Biography

Biography: Morio Toyoshima

Abstract

Ka-band broadband satellite communications services called high-throughput satellite (HTS) are now emerging all over the world. The National Institute of Information and Communications Technology (NICT) in Japan has established a user consortium to identify the future needs of communication-satellite users, has studied satellite-communication system concepts covering those needs, and has settled on technical issues for increasing communication speeds. The NICT has also come up with a conceptual design of a next-generation large-capacity satellite communication system. A feasibility study has been conducted into a prototype system, and development has begun. Our goal is to realize 100-Mbps-per-user, high-speed, large-capacity mobile communication using the Ka-band, and to implement flexible (variable-frequency bands and steerable beam) relay technology that can handle traffic fluctuations. According to projected increases in traffic and users, the feeder-link capacity in terms of frequency bands between satellites and terrestrial gateway stations will become exhausted soon. In addition, the radio regulations tend to make it difficult for RF bands to be allocated. To solve these issues, the feeder links could be achieved optically instead. The NICT has initiated the high-speed communication with advanced laser instrument (HICALI) project, for which NICT will develop an onboard ultra-high-speed laser communication system. The objective is to realize 10-Gbps-class optical feeder-link technology for a geostationary Earth orbit. The next step is to verify this technology on orbit, which would contribute to the next-generation hybrid (RF and optical frequencies) HTS. Here, the hybrid HTS communication system is introduced.